Достаточно часто в курсе математического анализа можно встретить задание со следующей формулировкой: «исследовать функцию и построить график» . Данная формулировка говорит сама за себя и разбивает задачу на два этапа:

  • Этап 1: исследование функции;
  • Этап 2: построение графика исследуемой функции.

Первый этап наиболее объемный и включает в себя отыскание областей определения и значений, экстремумов функции, точек перегиба графика и т.д.

Полный план исследования функции $y=f(x)$, предваряющий цель построение графика, имеет следующие пункты:

  • Поиск области определения функции $D_{y} $ и области допустимых значений $E_{y} $ функции.
  • Определение вида функции: четная, нечетная, общего вида.
  • Определение точек пересечения графика функции с осями координат.
  • Нахождение асимптот графика функции (вертикальные, наклонные, горизонтальные).
  • Нахождение интервалов монотонности функции и точек экстремума.
  • Нахождение промежутков выпуклости, вогнутости графика и точек перегиба.

Поиск области определения функции $D_{y} $ подразумевает нахождение интервалов, на которых данная функция существует (определена). Как правило, данная задача сводится к отысканию ОДЗ (область допустимых значений), на основании которых формируется $D_{y} $.

Пример 1

Найти область определения функции $y=\frac{x}{x-1} $.

Найдем ОДЗ рассматриваемой функции, т.е. значения переменной, при которых знаменатель не обращается в ноль.

ОДЗ: $x-1\ne 0\Rightarrow x\ne 1$

Запишем область определения: $D_{y} =\{ x\in R|x\ne 1\} $.

Определение 1

Функция $y=f(x)$ является четной в случае, если выполняется следующее равенство $f(-x)=f(x)$ $\forall x\in D_{y} $.

Определение 2

Функция $y=f(x)$ является нечетной в случае, если выполняется следующее равенство $f(-x)=-f(x)$ $\forall x\in D_{y} $.

Определение 3

Функция, не являющаяся ни четной, ни нечетной, называется функцией общего вида.

Пример 2

Определить вид функций: 1) $y=\frac{x}{x-1} $, 2) $y=\frac{x^{2} }{x^{2} -1} $; 3) $y=\frac{x}{x^{2} -1} $.

1) $y=\frac{x}{x-1} $

$f(-x)\ne f(x);f(-x)\ne -f(x)$, следовательно, имеем функцию общего вида.

2) $y=\frac{x^{2} }{x^{2} -1} $

$f(-x)=f(x)$, следовательно, имеем четную функцию.

3) $y=\frac{x}{x^{2} -1} $.

$f(-x)\ne -f(x)$, следовательно, имеем нечетную функцию.

Определение точек пересечения графика функции с осями координат включает нахождение точек пересечения: с осью ОХ ($y=0$), с осью OY ($x=0$).

Пример 3

Найти точки пересечения с осями координат функции $y=\frac{x+2}{x-1} $.

  1. с осью ОХ ($y=0$)

$\frac{x+2}{x-1} =0\Rightarrow x+2=0\Rightarrow x=-2$; получаем точку (-2;0)

  1. с осью ОY ($x=0$)

$y(0)=\frac{0+2}{0-1} =-2$, получаем точку (0;-2)

На основе результатов, полученных на этапе исследования функции, строится график. Иногда для построения графика функции недостаточно точек, полученных на первом этапе, тогда необходимо найти дополнительные точки.

Пример 4

Исследовать функцию и построить ее график: $y=x^{3} -6x^{2} +2x+1$.

  1. Область определения: $D_{y} =\{ x|x\in R\} $.
  2. Область значений: $E_{y} =\{ y|y\in R\} $.
  3. Четность, нечетность функции :\ \

Функция общего вида, т.е. не является ни четной, ни нечетной.

4) Пересечение с осями координат:

    с осью OY: $y(0)=0^{3} -6\cdot 0^{2} +2\cdot 0+1=1$, следовательно, график проходит через точку (0;1).

    с осью OХ: $x^{3} -6x^{2} +2x+1=0$ (рациональных корней нет)

5) Асимптоты графика:

Вертикальных асимптот нет, так как $D_{y} =\{ x|x\in R\} $

Наклонные асимптоты будем искать в виде $y=kx+b$.

$k=\mathop{\lim }\limits_{x\to \infty } \frac{y(x)}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -6x^{2} +2x+1}{x} =\infty $. Следовательно, наклонных асимптот нет.

6) Возрастание, убывание функции; экстремумы:

\ \[\begin{array}{l} {y"=0\Rightarrow 3x^{2} -12x+2=0} \\ {D=144-24=120} \\ {x_{1,2} =\frac{12\pm \sqrt{120} }{6} } \end{array}\]

Отметим точки на числовой оси, расставим знаки первой производной и отметим поведение функции:

Рисунок 1.

Функция возрастает на $\left(-\infty ;\frac{12-\sqrt{120} }{6} \right]$ и $\left[\frac{12+\sqrt{120} }{6} ;\infty \right)$, убывает на $\left[\frac{12-\sqrt{120} }{6} ;\frac{12+\sqrt{120} }{6} \right]$.

$x=\frac{12-\sqrt{120} }{6} $ - точка максимума; $y\left(\frac{12-\sqrt{120} }{6} \right)=1,172$

$x=\frac{12+\sqrt{120} }{6} $ - точка минимума; $y\left(\frac{12+\sqrt{120} }{6} \right)=-23,172$

7) Выпуклость, вогнутость графика:

\ \[\begin{array}{l} {y""=(3x^{2} -12x+2)"=6x-12} \\ {y""=0\Rightarrow 6x-12=0\Rightarrow x=2} \end{array}\]

Отметим точки на числовой оси, расставим знаки второй производной и отметим поведение графика функции:

Рисунок 2.

График направлен выпуклостью вверх на $(-\infty ;2]$, вниз на $

8) График функции:

Рисунок 3.

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

    Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

    Точки разрыва. (Если они имеются).

    Интервалы возрастания и убывания.

    Точки максимума и минимума.

    Максимальное и минимальное значение функции на ее области определения.

    Области выпуклости и вогнутости.

    Точки перегиба.(Если они имеются).

    Асимптоты.(Если они имеются).

    Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-; -1)  (-1; 1)  (1; ).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-; ).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки .

Найдем производную функции

Критические точки: x = 0; x = -;x = ;x = -1; x = 1.

Найдем вторую производную функции

Определим выпуклость и вогнутость кривой на промежутках.

- < x < -,y < 0, кривая выпуклая

-

1 < x < 0, y > 0, кривая вогнутая

0 < x < 1, y < 0, кривая выпуклая

1 < x < ,y > 0, кривая вогнутая

< x < , y > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

- < x < -,y > 0, функция возрастает

-

1 < x < 0, y < 0, функция убывает

0 < x < 1, y < 0, функция убывает

1 < x < ,y < 0, функция убывает

< x < , y > 0, функция возрастает

Видно, что точка х = -является точкоймаксимума , а точка х = является точкойминимума . Значения функции в этих точках равны соответственно 3/2 и -3/2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты .

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Ниже рассмотрим несколько примеров исследования методами дифференциального исчисления различных типов функций.

Пример: Методами дифференциального исчисления

1. Областью определения данной функции являются все действительные числа (-; ).

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

5. Возрастание и убывание функции, точки экстремума.

Видно, что у 0 при любом х  0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

y = 0 при х =0 и y =  при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y(1-h) < 0; y(1+h) >0; y(-h) > 0; y(h) < 0 для любого h > 0.

6. Построим график функции.

Пример: Исследовать функцию и построить ее график.

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

5. Находим точки экстремума функции.

; y = 0 при х = 2, у =  при х = 0.

y > 0 при х  (-, 0) – функция возрастает,

y < 0 при х  (0, 2) – функция убывает,

у > 0 при х  (2, ) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

> 0 при любом х  0, следовательно, функция вогнутая на всей области определения.

6. Построим график функции.

Пример: Исследовать функцию и построить ее график.

    Областью определения данной функции является промежуток х  (-, ).

    В смысле четности и нечетности функция является функцией общего вида.

    Точки пересечения с осями координат: с осью Оу: x = 0, y = 0;

с осью Ох: y = 0, x = 0, x = 1.

    Асимптоты кривой.

Вертикальных асимптот нет.

Попробуем найти наклонные асимптоты в виде y = kx + b.

- наклонных асимптот не существует.

    Находим точки экстремума.

Для нахождения критических точек следует решить уравнение 4х 3 – 9х 2 +6х –1 = 0.

Для этого разложим данный многочлен третьей степени на множители.

Подбором можно определить, что одним из корней этого уравнения является число

х = 1. Тогда:

4x 3 – 9x 2 + 6x – 1 x - 1

 4x 3 – 4x 2 4x 2 – 5x + 1

Тогда можно записать (х – 1)(4х 2 – 5х + 1) = 0. Окончательно получаем две критические точки: x = 1 и x = ¼.

Примечание. Операции деления многочленов можно было избежать, если при нахождении производной воспользоваться формулой производной произведения:

Найдем вторую производную функции: 12x 2 – 18x + 6. Приравнивая к нулю, находим:

Систематизируем полученную информацию в таблице:

вып. вниз

возрастает

вып. вниз

возрастает

вып.вверх

возрастает

вып. вниз

    Построим график функции.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.