Современная наука и техника немыслимы без знания химического состава веществ, которые являются объектами деятельности человека. Минералы, найденные геологами, и новые вещества и материалы, полученные химиками, прежде всего характеризуются по химическому составу. Для правильного ведения технологических процессов в самых различных отраслях народного хозяйства необходимо точное знание химического состава исходного сырья, промежуточных и готовых продуктов.

Бурное развитие техники предъявляет все новые требования к методам анализа вещества. Еще сравнительно недавно можно было ограничиться определением примесей, присутствующих в концентрации до 10-2–10-3%. Появление и быстрое развитие в послевоенные годы промышленности атомных материалов, а также производства твердых, жаропрочных и других специальных сталей и сплавов потребовало повышения чувствительности аналитических методов до 10-4– 10-6%, так как было установлено, что присутствие примесей даже в таких малых концентрациях существенно влияет на свойства материалов и ход некоторых технологических процессов.

В последнее время в связи с развитием промышленности полупроводниковых материалов к чистоте веществ, а следовательно, и к чувствительности аналитических методов предъявляются еще более высокие требования – необходимо определять примеси, содержание которых совершенно ничтожно (10-7–10-9%). Конечно, подобная сверхвысокая чистота веществ нужна только в отдельных случаях, но в той или иной степени повышение чувствительности анализа стало необходимым требованием почти во всех областях науки и техники.

При производстве полимерных материалов концентрация примесей в исходных веществах (мономерах) была весьма большой – часто десятые доли и даже целое число процентов. Недавно обнаружено, что качество многих готовых полимеров очень сильно зависит от их чистоты. Поэтому в настоящее время исходные непредельные соединения и некоторые другие мономеры проверяют на присутствие примесей, содержание которых не должно превышать 10-2– 10-4%. В геологии все шире используются гидрохимические методы разведки рудных месторождений. Для их успешного применения необходимо определять соли металлов в природных водах при концентрации 10-4– 10-8 г/л и даже меньше.

Повышенные требования предъявляются в настоящее время не только к чувствительности анализа. Внедрение в производство новых технологических процессов обычно тесно связано с разработкой методов, обеспечивающих достаточно высокую скорость и точность анализа. Наряду с этим от аналитических методов требуется высокая производительность и возможность автоматизации отдельных операций или всего анализа. Химические методы анализа далеко не всегда отвечают требованиям современной науки и техники. Поэтому все шире внедряются в практику физикохимические и физические методы определения химического состава, которые обладают рядом ценных характеристик. Среди этих методов одно из главных мест по праву занимает спектральный анализ.

Благодаря высокой избирательности спектрального анализа можно с помощью одной и той же принципиальной схемы, на одних и тех же приборах анализировать самые различные вещества, выбирая в каждом отдельном случае только наиболее благоприятные условия для получения максимальной скорости, чувствительности и точности анализа. Поэтому несмотря на громадное число аналитических методик, предназначенных для анализа различных объектов, все они основаны на общей принципиальной схеме.

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Методы спектрального анализа делятся на эмиссионные (эмиссия – испускание) и абсорбционные (абсорбция – поглощение).

Рассмотрим схему эмиссионного спектрального анализа (рис. 6.8а). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис. 6.8.

а – эмиссионного: б – абсорбционного: 1 – источник света; 2 – осветительный конденсор; 3 – кювета для анализируемой пробы; 4 – спектральный аппарат; 5 – регистрация спектра; 6 – определение длины волны спектральных линий или полос; 7 – качественный анализ пробы с помощью таблиц и атласов; 8 – определение интенсивности линий или полос; 9 – количественный анализ пробы по градуировочному графику; λ – длина волны; J – интенсивность полос

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов – спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 6.9а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 6.9е). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 6.96). Каждая полоса образована большим числом близко расположенных линий.

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты – монохроматоры – позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

Рис. 6.9.

а – линейчатый; 6 – полосатый; видны отдельные линии, составляющие полосу; в – сплошной. Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение); λ – длина волны

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы , спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме ) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов – образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.

Схема проведения абсорбционного спектрального анализа (рис. 6.8б) отличается от уже рассмотренной схемы только в своей начальной части. Источником света служит нагретое твердое тело или другой источник сплошного излучения, т.е. излучения с любой длиной волны. Анализируемую пробу помещают между источником света и спектральным аппаратом. Спектр вещества составляют тс длины волн, интенсивность которых уменьшилась при прохождении сплошного света через это вещество (рис. 6.10). Спектр поглощения веществ удобно изображать графически, откладывая по оси абсцисс длину волны, а по оси ординат – величину поглощения света веществом.

Рис. 6.10.

а – фотографическое; б – графическое; I – спектр источника сплошного света; II – спектр того же излучения после прохождения через анализируемую пробу

Спектры поглощения получают с помощью спектральных аппаратов – спектрофотометров, в состав которых входят источник сплошного света, монохроматор и регистрирующее устройство.

В остальном схемы проведения абсорбционного и эмиссионного анализа совпадают.

Спектральный анализ по спектрам испускания или поглощения включает следующие операции.

  • 1. Получение спектра анализируемой пробы.
  • 2. Определение длины волны спектральных линий или полос. После этого с помощью таблиц или атласов устанавливают их принадлежность к определенным элементам или соединениям, т.е. находят качественный состав пробы.
  • 3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам или соединениям, что позволяет найти их концентрацию в анализируемой пробе по предварительно построенным с помощью эталонов градуировочным графикам, т.е. найти количественный состав пробы.

Весь процесс выполнения спектрального анализа состоит, как мы видели, из нескольких этапов. Эти этапы можно изучать последовательно, независимо друг от друга, а затем рассмотреть их взаимосвязь.

С помощью спектрального анализа можно определять как атомный (элементарный), так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентраций.

Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально. Например, относительно просто выполняется анализ смеси редкоземельных элементов или смеси инертных газов. С помощью спектрального анализа можно определять изомерные органические соединения с очень близкими химическими свойствами.

Методы атомного спектрального анализа, качественного и количественного, в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Следует отмстить, что широта и объем практических применений молекулярного спектрального анализа, особенно в последнее время, быстро и непрерывно растут. Это связано прежде всего с разработкой и выпуском спектрально-аналитической аппаратуры для этого метода.

Область использования молекулярного спектрального анализа охватывает главным образом органические вещества, хотя можно с успехом анализировать и неорганические соединения. Молекулярный спектральный анализ внедряется главным образом в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Чувствительность спектрального анализа очень высока. Минимальная концентрация определяемого вещества, которая может быть обнаружена и измерена спектральными методами, колеблется в широких пределах в зависимости от свойств этого вещества и состава анализируемой пробы. Прямым анализом при определении большинства металлов и ряда других элементов сравнительно легко достигается чувствительность 10-3–а для некоторых веществ даже 10-5–1-6%. И только в особо неблагоприятных случаях чувствительность уменьшается до 10-1–10-2%. Применение предварительного отделения примесей от основы пробы позволяет сильно (часто в тысячи раз) повысить чувствительность анализа. Благодаря высокой чувствительности атомный спектральный анализ широко применяется для анализа чистых и особо чистых металлов, в геохимии и почвоведении для определения микроконцентраций различных элементов, в том числе редких и рассеянных, в промышленности атомных и полупроводниковых материалов.

Чувствительность молекулярного спектрального анализа для различных веществ изменяется в еще более широких пределах. В ряде случаев с трудом удается определять вещества, содержание которых в анализируемом образце составляет проценты и десятые доли процента, но можно привести примеры и очень высокой чувствительности молекулярного анализа 10-7–10-8%. Точность атомного спектрального анализа зависит от состава и структуры анализируемых объектов. При анализе образцов, близких по своей структуре и составу, можно легко достигнуть высокой точности. Ошибка в этом случае не превышает ±1–3% по отношению к определяемой величине. Поэтому, например, точным является серийный спектральный анализ металлов и сплавов. В металлургии и машиностроении спектральный анализ стал в настоящее время основным аналитическим методом.

Значительно ниже точность анализа веществ, состав и структура которых сильно меняется от пробы к пробе, но в последнее время и в этой области положение заметно улучшилось. Стал возможным количественный спектральный анализ руд, минералов, горных пород, шлаков и тому подобных объектов. Хотя полностью задача еще не решена, количественный анализ неметаллических проб сейчас широко применяется во многих отраслях промышленности – в металлургии, геологии, при производстве огнеупоров, стекол и других видов продукции.

Относительная ошибка определения при атомном спектральном анализе мало зависит от концентрации. Она остается почти постоянной как при анализе малых примесей и добавок, так и при определении основных компонентов образца. Точность химических методов анализа существенно снижается при переходе к определению примесей. Поэтому атомный спектральный анализ точнее химического в области малых концентраций. При средних концентрациях (0,1–1%) определяемых веществ точность обоих методов примерно одинакова, но в области высоких концентраций точность химического анализа, как правило, выше. Молекулярный спектральный анализ дает обычно более высокую точность определения, чем атомный, и не уступает в точности химическому даже при больших концентрациях.

Скорость спектрального анализа значительно превышает скорость выполнения анализа другими методами. Это объясняется тем, что при спектральном анализе не требуется предварительного разделения пробы на отдельные компоненты. Кроме того, сам анализ выполняется очень быстро. Так, при применении современных методов спектрального анализа точное количественное определение нескольких компонентов в сложном образце занимает всего несколько минут с момента доставки пробы в лабораторию до получения результатов анализа. Продолжительность анализа, конечно, возрастает, когда для повышения точности или чувствительности требуется предварительная обработка пробы.

С высокой скоростью проведения спектрального анализа тесно связана его большая производительность, что очень существенно при массовых анализах. Благодаря большой производительности и малому расходу реактивов и других материалов стоимость одного анализа при применении спектральных методов обычно мала, несмотря на значительные первоначальные затраты на приобретение спектральноаналитического оборудования. Больше того, как правило, чем выше первоначальные затраты и сложнее предварительная подготовка аналитической методики, тем быстрее и дешевле выполнение массовых анализов.

По своему существу спектральный анализ является приборным методом. При использовании современной аппаратуры число операций, требующих вмешательства спектроскописта, невелико. Установлено, что и эти оставшиеся операции могут быть автоматизированы. Таким образом, спектральный анализ позволяет подойти к полной автоматизации определения химического состава вещества.

Спектральный анализ является универсальным. С его помощью можно определять практически любые элементы и соединения в самых разнообразных твердых, жидких и газообразных аналитических объектах.

Для спектрального анализа характерна высокая избирательность. Это означает, что почти каждое вещество может быть качественно и количественно определено в сложной пробе, без ее разделения.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа:

    Эмиссионный спектральный анализ - физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества.

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например галлия, индия, таллия, свинца, марганца, меди, фосфора.

    Примечание. Кроме эмиссионной фотометрии пламени применяют абсорбнионную, называемую также атомно-абсорбционной спектроскопией или атомно-абсорбционной спектрофотометрией. Она основана на способности свободных атомов металла в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн. Этим методом можно определять сурьму, висмут, селен, цинк, ртуть и некоторые другие элементы, не определяемые методом эмиссионной фотометрии пламени.

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основанный на определении спектра поглощения или измерении светопоглощения в видимом участке спектра.

    В отличие от спектрофотометрии в фотоколориметрическом методе применяют «белый» свет или «белый» свет, предварительно пропущенный через широкополосные светофильтры.

    Метод анализа по спектрам комбинационного рассеяния света. В методе использовано явление, открытое одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление связано с поглощением веществом монохроматического излучения и последующим испусканием нового излучения, отличающегося длиной волны от поглощенного.

    Турбидиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбидиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряют так же, как в фотоколориметрии окрашенных растворов.

    Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

    Люминесцентный, или флуоресцентный метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами.

10)К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и полярометрический, основанный на изучении вращения плоскости поляризации.

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

Спектральные методы анализа основаны на изучении оптических спектров испускания или поглощения. Различают атомно-абсорбционный метод спектрального анализа (анализ по спектрам поглощения) и эмиссионный спектральный анализ (анализ по спектрам испускания). Спектральный анализ широко применяют для качественного и количественного анализа различных веществ. По характеристическим линиям спектра можно определять элементный состав вещества, а интенсивность спектральной линии является мерой концентрации вещества в пробе.

Эмиссионная спектроскопия

Атомы элементов в возбужденном состоянии испускают излучение со строго определенной длиной волны. Спектры испускания (эмиссионные спектры) для каждого элемента индивидуальны, они состоят из определенного набора характерных линий, по которым можно определять элементный состав вещества и его концентрацию.

При эмиссионном спектральном анализе исследуемую пробу испаряют или сжигают, если это жидкое или твердое вещество, затем подвергают действию высокой температуры или электрического заряда для перевода атомов в возбужденное состояние и регистрируют спектр. Качественный эмиссионный анализ сводится к расшифровке линий в спектре анализируемого образца. Количественный анализ основан на сравнении интенсивности спектральных линий образца с интенсивностью линий в спектре стандартного образца, содержание определяемого элемента в котором известно.

Источниками возбуждения могут служить пламя, электрическая дуга, искра, импульсный или электровакуумный разряд. Дуговой разряд дает температуру 5000-7000 °С, при которой в возбужденное состояние переходят атомы большинства элементов. В высоковольтной искре с температурой 7000-15000 °С возбуждаются атомы элементов с высоким потенциалом возбуждения. Импульсный и электровакуумные разряды используют для возбуждения инертных газов.

По методу регистрации спектра различают несколько видов эмиссионного спектрального анализа. При визуальном анализе качественный состав определяют непосредственным наблюдением видимого спектра. Более точен фотографический анализ, по которому спектр фотографируют на фотопластинку, которую затем рассматривают на спектропроекторе при качественных определениях или фотометрируют с помощью микрофотометра при количественных определениях. На фотографической пластинке получают фиксированный ряд линий, соответствующих спектральным линиям исследуемого образца, степень почернения которых пропорциональна интенсивности этих линий.

Для расшифровки спектрограмм используют спектропроекторы. Отечественной промышленностью выпускается спектропроектор ПС-18, который дает возможность получить на экране увеличенные в 20 раз небольшие участки спектра, облегчая их расшифровку при экспрессном качественном или полуколичественном анализе.

Плотность почернения линий на фотопластинке измеряют с помощью микрофотометров. Световой поток пропускают через незачерненную часть фотопластинки, а затем направляют его на фотоэлемент с гальванометром. Отмечают отклонение стрелки гальванометра по шкале. Затем световой поток пропускают через зачерненную часть пластинки и снова отмечают отклонение стрелки гальванометра. Плотность почернения определяют по уравнению:

где I0 - интенсивность света, прошедшего через незачерненную часть фотопластинки; I - интенсивность света, прошедшего через зачерненную часть фотопластинки.

Поскольку плотность почернения пропорциональна концентрации элемента, по показаниям гальванометра строят градуировочный график зависимости почернения от концентрации. По такому графику затем определяют содержание элемента. Для определения плотности почернения линий на спектрограмме применяют микрофотометр МФ-2 (или МФ-4) и двухлучевой микрофотометр ИФО-451.

При фотоэлектрическом эмиссионном анализе аналитические линии регистрируют с помощью фотоэлементов. Результат анализа указывается на шкале измерительного прибора или фиксируется на ленте самозаписывающего прибора.

Кварцевый спектрограф ИСП-28. Спектрограф ИСП-28 используют для получения спектров в интервале длин волн 200-600 нм. На нем проводят качественный и количественный анализы металлов, сплавов, руд, минералов и других материалов. На рис. 126 показана оптическая схема прибора. Свет от источника 1 (дуга или искра) через трехлинзовый конденсор 3-5, защищенный от брызг металлов кварцевой пластинкой 2, направляется в щель 6, находящуюся в фокусе зеркального объектива 8. Отраженный от этого объектива параллельный пучок света направляется на кварцевую призму 9. Подвергшийся дисперсии свет кварцевым объективом 10 фокусируется на эмульсии фотопластинки 11.

Другие спектрографы. Кварцевый лабораторный спектрограф ИСП-30 настольного типа применяется для качественного анализа металлов, сплавов и руд; стеклянный трехпризменный спектрограф ИСП-51 используется для анализа веществ, содержащих элементы с малым числом спектральных линий. Для анализа веществ, содержащих элементы с особо сложными спектрами, используют спектрограф СТЭ-1. Для качественного и количественного анализа металлов, руд, минералов и др. применяют длиннофокусный спектрограф ДФС-8 (три модификации) с дифракционными решетками и дифракционный спектрограф ДФС-452.

Пламенная фотометрия

Пламенная фотометрия является одним из наиболее точных методов эмиссионного спектрального анализа. Этот метод широко применяют для определения щелочных и щелочноземельных металлов. Сущность метода пламенной фотометрии заключается в следующем.

Раствор анализируемого вещества сжатым воздухом разбрызгивается в зону пламени газовой горелки, в которой сгорают ацетилен, водород, светильный или какой-либо другой газ. Пламя горелки служит также источником энергии для возбуждения атомов. Оптическое устройство выделяет спектральную линию определяемого элемента и измеряет ее интенсивность с помощью фотоэлемента. Интенсивность спектральной линии пропорциональна концентрации соли в растворе (в определенных границах). Концентрацию элемента определяют по градуировочному графику. Ниже приведены состав некоторых горючих газовых смесей и средняя температура, получаемая при их сжигании (в °С):

Портативный пламенный фотометр ППФ-УНИЗ. Принципиальная схема фотометра ППФ-УНИЗ представлена на рис. 127. Горючий газ из баллона (или городской сети) проходит через маностат 2, буферную бутыль 3, фильтр 4 и поступает через микрокран 5 в смеситель 7, выполняющий одновременно функцию каплеуловителя. Давление газа после маностата поддерживается постоянным с помощью микрокрана 5 и измеряется U-образным жидкостным манометром 6. Избыток газа выходит в лабораторную горелку 1 и сжигается.

Сжатый воздух из компрессора (без применения масляной смазки) или из баллона поступает в буферную бутыль 3", затем в фильтр 13. Давление воздуха поддерживается постоянным с помощью микрокрана 12 и измеряется манометром 11. Воздух поступает в распылитель 8, куда засасывается анализируемый раствор из стакана 10. Раствор в виде мелкораспыленного аэрозоля поступает в смеситель 7, где смешивается с горючим газом. Выходящая из смесителя газовоздушная смесь, содержащая в распыленном состоянии исследуемый элемент, через каплеуловитель 14 поступает в горелку 20.

Длина волны желтой линии пламени натрия составляет 589±5 мкм, красной линии кальция - 615±5 мкм, инфракрасной линии калия - 766±5 мкм. Интенсивность этих линий фиксируют фотоэлементом 16, снабженным сменными интерференционными светофильтрами 17 и диафрагмами 18. При определении натрия и кальция используют селеновые фотоэлементы типа АФИ-5 с чувствительностью 460-500 мкА/лм, для определения калия - сернисто-серебряный фотоэлемент типа ФЭСС-УЗ с чувствительностью 6000-9000 мкА/лм. Фотоэлементы и светофильтры защищены от прямого теплового излучения пламени стеклянным экраном 19. Возникающие фототоки регистрируются магнитоэлектрическим микроамперметром 21 типа М-95, к которому два из трех фотоэлементов присоединены по компенсационной схеме через электрический переключатель 15.

Перед началом работы с прибором открывают дверку 10 (рис. 128) и закрепляют ее с помощью фиксатора. К сливной трубке 14 распылителя 12 подсоединяют резиновую трубку и опускают ее в сосуд с запорной жидкостью высотой 20-25 см. Под всасывающую трубку 13 распылителя подставляют стакан вместимостью 25-30 мл с дистиллированной водой. На дверку устанавливают защитное устройство (козырек) 11 и включают прибор в сеть переменного тока в 220 В (50 Гц). Включают компрессор для подачи воздуха и, медленно вращая рукоятку микрокрана «воздух» 4 против часовой стрелки, добиваются хорошего распыления дистиллированной воды, т.е. образования высокодисперсного аэрозоля. Оптимальное давление воздуха (4-8)*10000 Па (0,4-0,8 атм) не должно изменяться в течение всего времени измерения.

Медленно вращая рукоятку микрокрана «газ» 5, подают газ в горелку и через 10-20 с зажигают его у входа в горелку и на выходе из маностата. Подачу газа регулируют так, чтобы внутренний конус пламени окрашивался в зеленый цвет, а внешний - в голубовато-синий. С помощью рукоятки 9 устанавливают горелку в таком положении, при котором внутренний конус пламени опущен на 5-6 см ниже кромки входного отверстия диафрагмы.

Измерения начинают после 20-минутного прогревания фотометрической ячейки. В период прогревания диафрагма ячейки должна быть полностью открыта, микроамперметр включают на низкую чувствительность (1,0 мкА) и в пламя горелки вводят дистиллированную воду. После прогревания фотоэлектрической ячейки диафрагму закрывают, рукоятку микроамперметра 6 переключают на высшую чувствительность (0,1 мкА) и указатель микроамперметра устанавливают на нуль, вращая головку корректора, находящуюся на правой боковой стороне прибора.

Для построения градуировочного графика готовят серию стандартных растворов. Для приготовления исходного раствора 2,385 г хлорида калия KCl (хч) растворяют в мерной колбе вместимостью 500 мл и разбавляют водой до метки. Отбирают пипеткой 5,00 мл этого раствора в мерную колбу вместимостью 500 мл и разбавляют дистиллированной водой до метки (разбавление в 100 раз). Полученный раствор содержит 25 мг калия в 1 мл, из него готовят растворы, содержащие 5, 10, 15 и 20 мг калия в 1 мл. Для этого в мерные колбы вместимостью 100 мл отбирают пипеткой 20, 40, 60 и 80 мл раствора с содержанием калия 25 мг/мл и разбавляют объем водой до метки.

Эти растворы последовательно вводят в пламя горелки и записывают показания микроамперметра. При переходе от одного раствора к другому распылитель промывают дистиллированной водой до возвращения стрелки микроамперметра к нулю. По полученным данным строят градуировочный график: показания микроамперметра (по оси абсцисс) - концентрация определяемого элемента (по оси ординат) (в мг/мл).

Для определения концентрации элемента в исследуемом растворе его вводят в пламя горелки и записывают показания микроамперметра, по которым, пользуясь градуировочным графиком, находят концентрацию определяемого элемента. В течение всего процесса анализа необходимо поддерживать постоянство давления воздуха и газа.

Кроме метода определения концентрации по градуировочному графику применяют метод ограничивающих растворов, т.е. снимают показания микроамперметра при анализе исследуемого раствора и параллельно показания прибора при анализе стандартных: растворов с меньшей и большей концентрацией. Содержание калия (в мг/л) вычисляют по формуле

где c1 - содержание калия в более концентрированном стандартном растворе; c2 - содержание калия в менее концентрированном стандартном растворе; I1 - показания микроамперметра при анализе стандартного раствора с большей концентрацией; I2 - показания микроамперметра при анализе стандартного раствора с меньшей концентрацией; Ix - показания микроамперметра при анализе исследуемого раствора.

Пламенный фотометр Flapho-4. Двухканальный прибор для серийного определения содержания натрия, калия, кальция, лития и свинца с высокой чувствительностью. Выпускается в ГДР.

Исследуемый раствор пробы всасывается протекающим через; распылитель сжатым воздухом и превращается в аэрозоль. Аэрозоль поступает в специальный резервуар, где к нему примешивается горючий газ (ацетилен или пропан), и полученная смесь подводится к горелке, окруженной очищенным воздухом. В газовом пламени исследуемое вещество испаряется, и его атомы возбуждаются. Металлизированный интерференционный фильтр выделяет из общего спектра пламени монохроматический компонент излучения, который попадает на селеновый фотоэлемент. Образующийся прерывистый фототок усиливается и подводится к измерительному или регистрирующему прибору. Схема прибора представлена на рис. 129.

Другие пламенные фотометры: фотометр пламенный ФП-101 трехканальный для определения концентрации Na, K, Ca и Li; фотометр пламенный ПФМ для количественного определения концентраций щелочных и щелочноземельных элементов, а также магния, бора, хрома и марганца; пламенно-фотометрические анализаторы жидкости ПАЖ-1 и БИАН-140 для определения микроколичеств K, Na, Ca и Li в растворах, фотометр пламенный для определения Na и K в биологических жидкостях.

Атомно-абсорбционная спектрофотометрия

Свободные атомы в невозбужденном состоянии, находящиеся в зоне низкотемпературного пламени, обладают способностью избирательно поглощать свет. Длина волны света, поглощаемого атомами элемента, совпадает с длиной волны света, испускаемого атомами этого элемента. Следовательно, по характеристическим линиям спектра поглощения и их интенсивности можно проводить анализ веществ, определяя их состав и концентрацию составляющих его элементов.

Для проведения атомно-абсорбционного анализа исследуемое вещество испаряют, подавая его в зону низкотемпературного пламени. Молекулы испарившегося вещества диссоциируют на атомы. Поток света, в спектре которого имеется линия света, поглощаемая веществом, пройдя через это пламя, ослабляется, и тем больше, чем выше концентрация анализируемого вещества.

На рис. 130 представлена принципиальная схема установки для атомно-абсорбционного анализа. Свет от разрядной трубки 1 (полый катод) проходит через пламя горелки 2 и фокусируется на щели монохроматора 3. Затем излучение попадает на фотоумножитель, или фотоэлемент 4. Монохроматор выделяет из общего светового потока излучение с длиной волны, поглощаемой исследуемым элементом. Ток усиливается в блоке 5 и регистрируется измерительным устройством 6.

Определение заключается в измерении отношения интенсивностей света, прошедшего через пламя с введенным в него анализируемым веществом и без него. Поскольку интенсивность спектральной линии исследуемого элемента в пламени горелки оказывается больше, чем их интенсивность излучения от полого катода, излучение последнего модулируют. Модуляция излучения (изменение амплитуды и частоты колебаний) осуществляется с помощью вращающегося диска с отверстиями (модулятор 7), расположенного между полым катодом и пламенем. Усилитель 5 должен иметь максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода.

Атомно-абсорбционный спектрофотометр AAS-1. Предназначается для абсорбционного и эмиссионного спектрального анализа. Дает возможность определять 65 элементов.

Принцип действия. Жидкая проба распыляется с помощью газа-окислителя, смешивается с горючим газом (ацетилен или пропан) и сжигается в пламени горелки. Через пламя горелки проходит излучение от лампы с полым катодом. После выделения дифракционным монохроматором подходящей линии излучение направляется на фотоумножитель. Постоянная составляющая тока, вызванная собственным излучением, подавляется. Сигнал от фото-умножителя усиливается, выпрямляется чувствительным выпрямителем и регистрируется. Прибор настраивается и контролируется по стандартным растворам.

На рис. 131 приведена схема атомно-абсорбционного спектрофотометра AAS-1.

Устройство прибора. Прибор имеет арматурный комплекс для снабжения газами, систему распыления и сжигания, сменное устройство для ламп с полыми катодами, оптическую систему я приемное устройство с усилителем и индикатором.

Пламя горелки питается смесью ацетилена или пропана и сжатого воздуха. Газы поступают в систему сжигания из обычных баллонов с отрегулированными (первичными) редукторами давления. Подача воздуха, свободного от масла, обеспечивается мембранным компрессором (16 л/мин под давлением 3*100000 Па (3 атм)). Арматурный комплекс прибора имеет регулируемые (вторичные) редукторы и расходомеры для контроля расхода каждого газа, а также керамические спеченные пылевые фильтры и склянку для дополнительного промывания ацетилена. Предохранительный клапан автоматически прекращает доступ горючего газа при снижении рабочего давления сжатого воздуха (например, вследствие перегиба или отрыва подводящего шланга); клапан исключает неправильный порядок подачи газов при зажигании пламени.

Система распыления и сжигания находится за съемным окном из многослойного стекла, позволяющего наблюдать за работой системы. Распылитель с кольцевым соплом обладает большим коэффициентом распыления и характеризуется низким расходом жидкости (3,4 мл/мин, или 0,5 мл за время всего анализа). Горелка оснащена сменными головками-насадками - одной щелевой для абсорбционного анализа (рис. 132, а) и двумя многодырчатыми (горелками Мекера с сеткой) для эмиссионного анализа (рис. 132,6).

Юстируемые держатели для четырех ламп с полыми катодами находятся в устройстве, позволяющем осуществлять быструю смену ламп. После замены одной из ламп держатели в юстировке не нуждаются.

Оптическая система направляет излучение лампы в виде узкого пучка на пламя. За счет бокового смещения тубуса с изображающей системой добиваются однократного или трехкратного прохождения излучения через пламя для повышения чувствительности анализа. Светосильный дифракционный монохроматор выделяет из линейчатого спектра данной лампы с полым катодом желаемую резонансную линию. Ширину щели монохроматора регулируют в пределах от 0 до 2 мм.

Прецизионная дифракционная решетка с 1300 штрихами на 1 мм и угловой дисперсией 1,5 нм/мм обладает большой разрешающей способностью. Спектральный интервал решетки от 190 до 820 нм.

Приемником излучения служит 12-каскадный фотоумножитель. Измерительный усилитель, блок питания ламп с полым катодом и фотоумножители работают на транзисторах и способны компенсировать колебания напряжения сети от +10 до -15%.

Показания прибора отсчитывают по стрелочному индикатору, имеющему три шкалы: логарифмическая шкала коэффициента погашения от 0 до 1,5; линейная шкала от 0 до 100 и шкала рабочих напряжений от 0 до 16 мВ. К прибору может быть подключено регистрирующее или вычислительное устройство для определения концентрации или для обработки данных. Чувствительность определений (в мг/л) составляет:

Прибор работает от сети переменного тока 220 В, 50 Гц. Выпускается в ГДР.

Другие отечественные атомно-абсорбционные спектрофотометры: атомно-абсорбционный спектрофотометр С-302 для определения микроколичеств железа, меди, цинка, кобальта, никеля, висмута, кальция и других элементов; автоматизированный атомно-абсорбционный спектрофотометр АА-А для определения кальция и меди с повышенной чувствительностью; «Сатурн» - пламенный атомно-абсорбционный полуавтоматический регистрирующий спектрофотометр для определения 32 элементов; «Спектр-1» - атомно-абсорбционный спектрофотометр для экспрессного определения более 40 элементов чувствительностью примерно 0,2 мкг/мл.

В Англии выпускается атомно-абсорбционный спектрофотометр Перкин-Эльмер, модель 603. Прибор построен по двухлучевой схеме, скомбинирован с микрокомпьютером. Обеспечивает высокую точность и экспрессность определения. Для зажигания пламени используется горючая смесь кислород-ацетилен.

Спектры излучения . Спектральный состав излучения у различных ве­ществ имеет весьма разнообразный характер. Однако все спектры делятся на три типа: а) сплошной спектр; б) линейчатый спектр; в) полосатый спектр.

а) Сплошной (непрерывный) спектр . Накаленные твердые и жидкие тела и газы (при большом давлении) испускают свет, разложение которого дает сплошной спектр, в котором спектральные цвета непрерывно переходят один в другой. Характер непрерывного спектра и сам факт его существования опре­деляются не только свойствами отдельных излучающих атомов, но и вза­имодействием атомов друг с другом. Сплошные спектры одинаковы для разных веществ, и поэтому их нельзя использовать для определения состава вещества.

б) Линейчатый (атомный) спектр . Возбужденные атомы разреженных газов или паров испускают свет, разложение которого дает линейчатый спектр,состоящий из отдельных цветных линий. Каждый химический элемент имеет характерный для него линейчатый спектр. Атомы таких веществ не взаимодействуют друг с другом и излучают свет только определенных длин волн. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Это позволяет по спектральным линиям судить о химическом составе источника света.

в) Молекулярный (полосатый) спектр .Спектр молекулы состоит из большого числа отдельных линий, сливающихся в полосы, четкие с одного края и размытые с другого. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Серии очень близких линий группируются на отдельных участках спектра и заполняют целые полосы. В 1860 г. немецкие ученые Г. Кирхгоф и Р. Бунзен, изучая спектры металлов, установили следующие факты:

1) каждый металл имеет свой спектр;

2) спектр каждого металла строго постоянен;

3) введение в пламя горелки любой соли одного и того же металла все­гда приводит к появлению одинакового спектра;

4) при внесении в пламя смеси солей нескольких металлов в спектре одновременно появляются все их линии;



5) яркость спектральных линий зависит от концентрации элемента в данном веществе.

Спектры поглощения. Если белый свет от источника, дающей сплошной спектр, пропускается через пары исследуемого вещества и затем разлагается в спектр, то на фоне сплошного спектра наблюдаются темные линии поглощения в тех же самых местах, где находились бы линии спектра испускания паров исследуемого элемента. Такие спектры получили название атомных спектров поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Атомы поглощают излучение лишь тех длин волн, которые они могут испускать при данной температуре.

Спектральный анализ. Явление дисперсии используется в науки и технике в виде метода определения состава вещества, получившего название спектрального анализа. В основе этого метода лежит изучение света, излучаемого или поглощаемого веществом. Спектральным анализом называется метод изучения химического состава вещества, основанный на исследовании его спектров.

Спектральные аппараты . Для получения и исследования спектров используют спектральные аппараты. Наиболее простые спектральные приборы - призма и дифракционная решетка. Более точные - спектроскоп и спектрограф.

Спектроскопом называется прибор, с помощью которого визуально исследуется спектральный состав света, испускаемого некоторым источником. Если регистрация спектра происходит на фотопластинке, то прибор называется спектрографом.

Применение спектрального анализа . Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Состав сложных, главным образом органических смесей анализируется по их молекулярным спектрам.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10 -10 г. Линии, присущие данному элементу, позволяют качественно судить о его наличии. Яркость линий дает возможность (при соблюдении стандартных условий возбуждения) количественно судить о наличии того или иного элемента.

Спектральный анализ можно проводить и по спектрам поглощения. В астрофизике по спектрам можно определить многие физические ха­рактеристики объектов: температуру, давление, скорость движения, маг­нитную индукцию и др. с помощью спектрального анализа определяют химический состав руд и минералов.

Основные направления применения спектрального анализа таковы: физико-химические исследования; машиностроение, металлургия; атомная индустрия; астрономия, астрофизика; криминалистика.

Современные технологии создания новейших строительных материалов (металлопластиковые, пластиковые) непосредственно взаимосвязаны с такими фундаментальными науками как химия, физика. Данные науки используют современные методы исследования веществ. Поэтому спектральный анализ можно применять для определения химического состав состава строительных материалов по их спектрам.

Спектры, способы их получения, особенности, классификация и использование для аналитических целей. Основные элементы спектральных приборов и их назначение

Спектральные методы анализа - это методы, основанные на определении химического состава и строения веществ по их спектру.

Спектром вещества называют упорядоченное по длинам волн электромагнитное излучение, испускаемое, поглощаемое, рассеиваемое или преломляемое веществом. Методы, основанные на получении и изучении спектров испускания (эмиссии) электромагнитного излучения (энергии), называют эмиссионными, поглощения (абсорбции) - абсорбционными, рассеяния - методами рассеяния, преломления - рефракционными.

Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны (табл.2.2.1).

Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси.

Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть. Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК), микроволновые и т.д.

Методы, работающие в УФ, видимом и ИК диапазоне называют оптическими. Они больше всего применяются в спектральных методах вследствие сравнительной простоты оборудования для получения и регистрации спектра.

Спектры оптического диапазона являются результатом изменения энергии атомов или молекулах.

Таблица 2.2.1

Вид излучения Атомные и молекулярные процессы Источники возбуждения Детекторы излучения
, нм название
10-3 -излучение Ядерные Циклотроны Счётчики Гейгера,
10-2 Рентгеновское реакции сцинциляционные счётчики, фотопластины
10-1 Переходы внешних Рентгеновские трубочки
100 электронов
101 УФ ваккумное
2·102 УФ дальнее Переходы внешних электронов Рентгеновские трубочки, искра, пламя, дуга Фотоэлементы, фотоматериалы
3·102 УФ ближнее
375-750 Видимое Глаз, фотоэлемент
104 ИК ближнее Колебания молекул Нагретые металлические нити Вакуумные термопары,
105 Дальнее Вращение молекул боллометры

В результате изменения энергии атома или молекулы они переходят из основного состояния с минимально возможной внутренней энергией Е0 в возбужденное состояние с энергией Е1. Внутренняя энергия является величиной дискретной (квантовой), поэтому переход атома или молекулы из основного состояния в другое всегда сопровождается скачкообразным изменением энергии, т.е. получением или отдачей порции (кванта) энергии.

Квантами электромагнитного излучения являются фотоны, энергия которых связана с частотой и длиной волны излучения известным соотношением

Е = h ·  =

,

где Е = Е1 - Е2, Е1 - энергия начального, а Е2 - энергия конечного состояния атома или молекулы, между которыми происходит переход; h - постоянная Планка; с - скорость света;  - частота;  - длина волны электромагнитного излучения.

При возбуждении атома происходит перемещение электронов с внешних заполненных уровней на незаполненные более высокие энергетические уровни.

В возбуждённом состоянии атом не может долго находиться. Он стремится отдать полученную избыточную энергию и возвратиться в невозбуждённое состояние. Через очень короткое время (10-8 - 10-7с) атом самопроизвольно возвращается из возбуждённого состояния в основное или промежуточное.

При переходе электрона с верхнего уровня на нижний выделяется фотон - квант излучения с определёнными  и .

Схематично электронные переходы в атомах между различными состояниями, сопровождающиеся испусканием и поглощением квантов электромагнитного излучения, можно представить в виде схемы (рис.2.2.1).


Горизонтальными линиями на рис.2.2.1. изображены уровни энергии различных состояний атома. Уровень Е0 это уровень основного состояния; Е1, Е2, Е3 - уровни возбуждённых состояний в порядке возрастания их энергии. Вертикальные стрелки соответствуют испусканию (стрелка вниз) или поглощению () фотона. Очевидно, что

01 = 10, 13 = 31 и т.д.

Совокупность фотонов, испускаемых или поглощаемых при каком - либо одном электронном переходе атома, создающая излучение с одной длиной волны, называется спектральной линией. Длина волны спектральной линии может быть определена из соотношения  =

. Совокупность спектральных линий, относящихся к определённому атому (молекуле), образует спектр данного атома (молекулы).

Спектр, обусловленный переходом при Е1  Е2, называется спектром испускания, а при Е1  Е2 - спектром поглощения. Переходы и соответствующие спектральные линии, проходящие с основного энергетического уровня или на него, называются резонансными.

Для возбуждения спектральной линии необходима определённая энергия, называемая потенциалом возбуждения. Если сообщить атому слишком большую энергию, то может произойти полное удаление электрона, т.е. ионизация атома. Необходимая для этого энергия называется потенциалом ионизации. Резонансные линии самые яркие и характеризуются наименьшим потенциалом возбуждения.

Изменение энергии молекулы сопровождается изменением как энергии колебаний и вращений, т.е. у молекулы нет чисто электронных переходов, а возможны только электронно-колебательно-вращатель-ные (ЭКВ) переходы. Число возможных ЭКВ переходов у молекулы значительно больше, чем у атомов, поэтому, как правило, спектры молекул сложнее и состоят из большего числа спектральных линий в оптическом диапазоне длин волн. Принципиальную схему энергетических уровней молекулы можно представить следующим образом (рис.2.2.2).


Рис.2.2.2. Схема энергетических уровней молекулы

Как для молекул, так и для атомов проявляются не все мыслимые переходы. Переходы регламентируются так называемыми правилами отбора: разрешенными являются переходы, при которых квантовое число меняется на единицу (например, Sp, pd и т.д.).

Для аналитических целей можно использовать как эмиссионные, так и абсорбционные спектры, поскольку они взаимосвязаны. Например, свет, излучаемый раскалёнными парами металлического натрия, пропущенный через призму, даёт две очень близкие желтые линии с длинами волн 589,0 и 589,6 мкм. Это так называемые D - линии натрия. С другой стороны, если пропускать полихроматический белый свет (т.е. Совокупность пучков света со всеми длинами волн) через пары натрия, а затем разложить его на составляющие цвета в стеклянной призме, то на фоне непрерывного спектра будут обнаружены две чёрные линии как раз на месте D - линий. Следовательно, пары натрия поглощают излучение именно с теми длинами волн, какие они испускают при возбуждении.

Это - общая закономерность, поэтому спектральный анализ можно проводить как по спектру испускания, так и по спектру поглощения. Первый способ удобен для анализа материалов, в которых легко возбуждается спектр испускания составляющих веществ, например металлов и газов, а второй - более удобен при анализе материалов, в которых трудно вызвать возбуждение составляющих веществ (например, растворы).

Эмиссионные спектры делятся на сплошные, полосатые, линейчатые (рис.2.2.3). Сплошные (или непрерывные) спектры содержат все длины волн в определённом интервале.

Их испускают раскалённые которые находятся на таких расстояниях друг от друга, что их излучение можно считать независимым. Газы и пары металлов имеют линейчатые спектры.

Линии в спектрах атомов расположены не беспорядочно, а объединяются в группы, называемые сериями. Расстояния между линиями в серии закономерно убывают по мере перехода от более длинных волн к более коротким.

Бальмеером для простейшего линейчатого спектра водорода было обнаружено, что частоты спектральных линий в сериях, расположенных в различных областях электромагнитного излучения, находятся в определённой закономерной связи друг с другом, которую в общем виде для всех элементов выразили зависимостью

или в определённых случаях