Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны, невозможно или в силу каких-то причин нежелательно.

Схематическое изображение конструкции интерферометра Майкельсона

Пучок света от практически точечного источника S, находящегося в фокусе линзы, превращается этой линзой в параллельный пучок (часто в современных применениях этот пучок - просто лазерное излучение, не коллимированное дополнительной линзой). Далее этот пучок полупрозрачным плоским зеркалом SM делится на два, каждый из которых отражается назад зеркалами М 1,2 соответственно. Эти два отраженных пучка формируют на экране SC интерференционную картину, характер которой определяется соотношением форм волновых фронтов обоих пучков

Волновые фронты пучков, образующих интерференционную картину

Именно, эти два пучка в точке нахождения экрана могут иметь различные радиусы кривизны волновых фронтов R 1,2 , а также взаимный наклон последних a. В частности, легко сообразить, что оба указанных радиуса окажутся одинаковыми, а a=0, тогда и только тогда, когда зеркала М 1,2 оба плоские (или вообще одинаковой формы), и положение зеркала М 1 в пространстве совпадает с зеркальным отражением М 2 в делителе SM, то есть М 2 " (см. рис. 1).

В таком случае на экране освещенность будет однородной, что и означает идеальную юстировку интерферометра.

В случае a¹0, R 1 =R 2 (расстояния от делителя до зеркал съюстированы правильно, но углы наклона - нет) на экране появится картина эквидистантных прямых интерференционных полос, как при интерференции отраженных от двух граней тонкого клина волн.

В случае a=0, R 1 ¹R 2 (правильная угловая юстировка, но неправильные расстояния зеркал до делителя) интерференционная картина представляет собой концентрические кольца, обусловленные пересечением двух сферических волновых фронтов разной кривизны.



Наконец, в случае a=0, R 1 =R 2 , но неидеальной плоскостности одного из зеркал - картина будет представлять собой неправильной формы “кольца Ньютона” вокруг неровностей соответствующей зеркальной поверхности.

Все указанные изменения наблюдаемой картины наступают при весьма малых (десятые доли длины волны по пространственному позиционированию и высоте неровностей зеркал, и десятки микрорадиан по угловой юстировке) отклонениях юстировочных параметров от идеала. Если учесть это, становится ясным, что интерферометр Майкельсона представляет собой весьма точное устройство для контроля позиционирования объекта в пространстве, его угловой юстировки и плоскостности. Специальные методы точного измерения распределения интенсивности в плоскости экрана позволяют повысить точность позиционирования до единиц нанометров.

Техническая реализация эффекта

Техническая реализация осуществляется в полном соответствии с рис. 1 содержательной части. Лазерный пучок гелий-неонового лазера (для наглядности лучше его расширить телескопом до диаметра миллиметров 10-15) делится полупрозрачным зеркалом на два, отражается от двух плоских зеркал, и получается некая интерференционая картина на экране. Затем путем аккуратной юстировки длин плеч и углового положения зеркал добиваются исчезновения интерференционной картины в области перекрытия пучков на экране.

Применения интерферометра Майкельсона в технике весьма разнообразны. К примеру, он может быть использован для дистанционного контроля малых деформаций (отклонений от плоскостности) объекта (заменяющего собой одно из зеркал рис. 1). Такой подход весьма удобен когда по тем или иным причинам нежелательно близкое расположение объекта и эталонной поверхности (второго зеркала рис. 1). Например, объект сильно нагрет, химически агрессивен и тому подобное.

Но самое существенное техническое применение интерферометра Майкельсона состоит в использовании этой схемы в оптических гироскопах, основанных на эффекте Саньяка, для контроля сдвига интерференционной полосы, порожденного вращением.

Основой устройства интерферометра Майкельсона служит явление интерференции световой волны в тонких пленках. В рассматриваемом приборе это явление реализуется при помощи деления амплитуды волны света.

В составе интерферометра имеется плоскопараллельная пластина ($A$), которая покрыта серебром или алюминием. Эта пластина закреплена на постаменте под углом в $45{}^\circ $ к направлению лучей. Кроме этого имеются два плоских зеркала ($С\ и\ D$), расположенных перпендикулярно (рис.1).

Для компенсации разности хода лучей в приборе используется пластинка $B$. Волны света идут от источника $S$. Данные волны испытывают частичное отражение от пластины$\ A$, часть их них преодолевает данную пластину, таким образом, получают две когерентные световые волны. Волны, прошедшие сквозь пластину $A$, претерпевают отражение от зеркал $C\ и\ D$, и возвращаются к ней. Часть данных волн снова проходит через пластину $A,$ часть отражается от нее. Полученные волны способны интерферировать на отрезке $AK$. Интерференция получается в результате деления амплитуды на пластинке $A$. Картину интерференции наблюдают в зрительную трубу.

Повернем плечо $DA$ на угол $90{}^\circ $ (рис.1). В таком случае зеркало будет располагаться в положении, которое на рис.1 обозначено как $D"$. Между зеркалами $D"$ и $C$ возникает небольшой промежуток, который можно уподобить тонкой пленке. Если зеркала будут расположены строго нормально друг к другу, то в результате интерференции мы получим полосы равного наклона в виде концентрических колец. Для наблюдения картины интерференции в таком случае, зрительную трубу следует настраивать на бесконечность. Если угол между зеркалами не является точно равным $90{}^\circ $, то промежутком между ними будет клин. Результатом такой интерференции будут прямые полосы равной толщины. Для рассмотрения такой картины интерференции зрительную трубу направляют на грань пластинки $A,$ которая покрыта серебром.

Интерференция монохроматических волн в направлении оси интерферометра

Если световые волны идут четко по оси интерферометра, то оптическая разность их хода ($\Delta $) возникает как разница длин плечей ($p_1\ и\ p_2\ $) интерферометра:

\[\Delta =2\left(p_1-\ p_2\right)\left(1\right).\]

В таком случае разность хода составляет величину:

\[\delta =\frac{2\pi \Delta }{\lambda }\left(2\right).\]

Отметим, что в рассматриваемом случае мы не будем учитывать изменение фазы волны, которая возникает, когда она отражается от зеркал и преломляется в пластинке A, так как картина интерференции от этого не изменяется.

Допустим, что когда волна падает на пластину A, плотность потока ее энергии делится на две части. Зададим волны, которые идут по направлению к зрительной трубе при помощи равнений:

где $E_0$ - амплитуда падающей волны; $\delta ={\varphi }_2-{\varphi }_1$. Интенсивность полученной волны равна:

где $I_0=\frac{1}{2}{E_0}^2$ - интенсивность волны источника.

Следуя выражению (3) при:

\[\delta =\left(2m+1\right)\pi ,\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(4\right),\] \

В том случае, если:

\[\delta =2m\pi ,\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(6\right),\] \

При выполнении условия (6) вся энергия источника приходит к «экрану». Поток энергии, возвращающийся к источнику света, отсутствует.

Примеры задач с решением

Пример 1

Задание. Как можно применять интерферометр Майкельсона в оптических исследованиях?

Решение. Возможность перемещения зеркала интерферометра (например, зеркала D), способно изменят разность хода интерферирующих лучей. Это обуславливает все возможности применения данного интерферометра, как оптического прибора. С его помощью можно проводить измерение длин волн света. Следует учитывать, что перемещение зеркала проводится так, что его отражающая поверхность параллельна самой себе.

Интерферометром Майкельсона можно измерять изменения показателя преломления света. Путь в одно из равных плеч интерферометра введена дополнительная пластинка толщиной $d$ и показателем преломления $n"$, тогда между интерферирующими лучами появится разность хода:

\[\Delta =2d\left(n"-n\right)\left(1.1\right),\]

где $n=1$ - показатель преломления воздуха. Для восстановления картины интерференции в поле зрения трубы, следует увеличить другую длину плеча интерферометра на величину, равную:

\[\Delta p=\frac{\Delta }{2}=d\left(n"-1\right)\left(1.2\right).\]

Майкельсон использовал прибор для проверки связи направления распространения светового луча относительно Земли и скорости света.

При помощи интерферометра Майкельсона впервые провели систематическое исследование тонкой структуры спектральных линий и сравнили эталонный метр с длиной волны света. На настоящий момент интерферометр Майкельсона устарел как прибор для научных исследований.

Пример 2

Задание. На сколько следует сместить зеркало D параллельно самому себе (рис.2) для того, чтобы картина интерференции сместилась на $k$ полос? Длина световой волны равна $\lambda $. \textit{}

Решение. В качестве основы для решения задачи используем условие получения интерференционных максимумов

\[\Delta =m\lambda \ \left(m=0,\pm 1,\pm 2,\dots \right)\left(2.1\right).\]

С другой стороны мы знаем, что для интерферометра в первом положении зеркал:

\[{\Delta }_1=2\left(p_2-\ p_1\right)=m_1\lambda \left(2.2\right).\]

В состоянии интерферометра, когда одно зеркало сдвинули на расстояние $\Delta p$ (искомое расстояние):

\[{\Delta }_2=2\left(p_2+\Delta p-\ p_1\right)=m_2\lambda \left(2.3\right).\]

Найдем разность между уравнениями (2.2) и (2.3), имеем:

\[{\Delta }_2-{\Delta }_1=m_2\lambda -m_1\lambda =2\left(p_2+\Delta p-\ p_1\right)-2\left(p_2-\ p_1\right)\left(2.4\right).\]

По условию задачи:

преобразуя выражение (2.4), получим:

Ответ. $\Delta p=\frac{k\lambda }{2}$

Цель работы изучение интерференционного метода измере­ния показателя преломления. Измерение показателя преломления плоскопараллельной стеклянной пластины.

Принцип действия интерферометра

Прибор, с помощью которого измеряется показатель прелом­ления, называется рефрактометром. Рассмотрим рефрактометр, принцип действия которого основан на интерференции света – интерференционный рефрактометр. В нашей работе исполь­зуется интерферометр Майкельсона. Интерферометр Майкельсо­на сыграл громадную роль в истории науки. В частности, с по­мощью такого интерферометра был осуществлен знамени­тый опыт Майкель- сона–Морли, целью которого было обнару­жение движения Земли относительно эфира.

Схема интерферометра Майкельсона приведена на рис. 1. Стрелками показано направление распространения лучей. Световой пучок от источника света S падает на светоделитель СД и разделяется на два пучка – 1 и 2 . Угол наклона светоделителя к оси падающего пучка равен 45. Пучок 1 , отраженный от светоделителя, падает на плоское зерка­ло З 1 , отражается от него (1 ), частично проходит сквозь светодели­тель (1 ) и попадает на экран Э. Пучок 2 , прошедший светоделитель, падает на плоское зеркало З 2 , отражается от него (2 ), затем отражается (2 ) от светоделителя и также

попадает на экран Э. В области перекрытия пучков 1  и 2  на экране наблюдается интерференционная картина.

Интенсивность света в каждой точке экрана зависит от разности фаз складывае­мых световых колебаний в данной точке. Для интерференционных измерений необходима высококонтрастная интерференционная картина, т.е. распределение интенсивности, в котором максимумы и минимумы достоверно отличаются от среднего фона. Такая картина получается, если, в идеале, излучение строго монохроматично, тогда разность фаз интерферирующих полей в каждой точке не зависит от времени. Такие поля называются когерентными.

Интерфе­рирующие пучки проходят разные оптические пути. Под оптическим путем понимают путь, который прошел бы свет в вакууме за то же время, что и при прохождении геометри­ческого пути в среде с показателем преломления:


В вакууме исовпадают. Если на пути луча есть несколько участков с разными показате­лями преломления, то оптический путь на всем геометрическом пути равен сумме оптических путей на каждом из участков.

В курсе оптики показано, что если разность начальных фаз интерферирующих волн равна нулю, то разность фаз
, возникающая при распространении волн, пропорциональна оп­тической разности хода лучей (разности оп­тических путей)
:

, (1)

где – длина волны излучения. Максимумы интенсивности света наблюдаются в том случае, когда разность фаз кратна 2. В этом случае
,

Если излучение немонохроматично, т.е. состоит из колебаний на разных частотах, то разность фаз в каждой точке нестационарна во времени. Если бы интерференционная картина регистрировалась с помощью быстрого фотоприемника (например, фотоаппарата с очень малым временем экспозиции), то на последовательности фотографий были бы видны контрастные интерференционные картины, однако от снимка к снимку положение максимумов и минимумов хаотически бы менялось. Инерционный фотоприемник, например глаз, усредняет эти случайные колебания, и вместо интерференционной картины на экране зрительно наблюдается однородный «серый» фон. По этой причине невозможно наблюдать стационарную интерференционную картину полей двух разных источников излучения. Во всех интерферометрах два световых пучка получают от одного источника.

Если излучение квазимонохроматично, т.е. ширина спектра колебаний
, где– средняя длина волны спектра, то контрастная интерференционная картина наблюдается, если случайный сбой фазы намного меньше 2. Для этого оптическая разность хода пучков должна быть намного меньше длины когерентности источника, т.е. такой разности хода волн, при которой интерференция исчезает. Длина когерентности непрерывного лазерного излучения составляет несколько метров минимум, тогда как оптическая разность хода пучков в данной лабораторной работе не превышает 1–2 см. Следовательно, необходимое условие для наблюдения контрастной интерференционной картины выполняется.

Если плавно изменять оптическую разность хода, то будут чередоваться максимумы и минимумы освещенности экрана. При изменении оп­тической разности хода на
светлое пятно сменится тем- ным и т.п. Плавное изменение оптической разности хода на
приведет к тому, что освещенность экрана пройдет через максимум (или минимум)N раз. Изменить оптиче­скую разность хода в интерферометре Майкельсона можно, сместив одно из зеркал вдоль направления луча, или, при неподвиж­ных зеркалах, изменив показатель преломления среды на пути одного из интерферирующих лучей. По такому принципу устроены высокоточные лазерные интерференционные измерители перемещений.

Однако для измерения показателя преломления интерферометр разъюстируют: одно из зеркал отклоняют на малый угол от нормали к оси падающего пучка (зеркало З 1 на рис. 1, штриховая линия под зеркалом). Реально угол наклона составляет несколько угловых минут, т.е. существенно меньше показанного на рисунке. Вследствие разъюстировки пучки 1  и 2  не параллельны и на экране они перекрываются частично. Как известно из теории интерференции, при наложении монохроматических плоских волн с разными направлениями распростра-

нения наблюдается интерференционная картина в виде периодической системы светлых и темных прямых полос, перпендикулярных к плоскости волновых векторов интерферирующих волн . Такая картина и будет наблюдаться на экране в области перекрытия пучков. При изменении разности фаз волн происходит сдвиг интерференционной картины как целого.

Примечание. Реальные волновые фронты – сферические поверхности, причем отклонение сферы от плоскости экрана в пределах диаметра пучка достигает (20–30). Казалось бы, на экране должны наблюдаться интерференционные кольца Ньютона. Однако вид интерференционной картины определяется взаимным отклонением двух сферических поверхностей. Можно показать, что при малом угле разъюстировки интерференционная картина будет такой же, как и при интерференции плоских волн – система прямых полос.

> Интерферометр Майкельсона

Рассмотрите принцип действия интерферометра Майкельсона . Узнайте, как выглядит интерференционная картина в интерферометре Майкельсона, схема и применение.

Интерферометр Майкельсона - наиболее распространенная конфигурация в сфере оптической интерферометрии.

Задача обучения

  • Разобраться в принципе функционирования интерферометра Майкельсона.

Основные пункты

  • В интерферометрии используют наложенные волны, чтобы добыть о них информацию.
  • Конкретный привод разбивает луч света на два пути, отскакивая назад и рекомбинируя их для формирования интерференционной картинки.
  • Наиболее известное применение – эксперимент Майкельсона-Морли, где нулевой результат стал вдохновением на специальную теорию относительности.

Термины

  • Специальная теория относительности: скорость света остается стабильной во всех системах отсчета.
  • Наложенный – располагается над чем-то другим.
  • Интерференция – созданный суперпозицией эффект, из-за искажения под действием атмосферного или иного влияния.

Интерферометрия

Если говорить просто, то интерферометрия – использование помех в наложенных волнах, чтобы измерить их характеристики. Метод интерферометрии применяется во многих научных областях, например, астрономии, инженерии, физике, волоконной оптике и океанографии.

В промышленном плане с ее помощью измеряют небольшие помещения, показатель преломления и неровности на поверхностях. При объединении двух волн с единой частотой, результирующий узор основывается на отличие их фаз. Конструктивные помехи формируются, если волны соответствуют по фазе, а деструктивные – не сходятся. Этот принцип используют в интерферометрии, чтобы получить сведения об исходном состоянии волн.

Интерферометр Майкельсона

Интерферометр Майкельсона – самый распространенный в использовании интерферометр, созданный А. А. Майкельсоном. Принцип действия заключается в разделении светового луча на два пути. После этого он рекомбинирует их и формирует интерференционную картинку. Чтобы создать полосы на детекторе, пути должны обладать разной длиной и составом.

Цветные и монохроматические полосы: (а) – белые полосы, где два пучка отличаются по числу фазовых инверсий; (b) – белые полосы, где два пучка характеризуются единым числом фазовых инверсий; (с) – шаблон полос с монохроматическим светом

На нижнем рисунке видно, как работает прибор. M 1 и M 2 – два сильно полированных зеркала, S – световой источник, M – зеркало с половиной серебра, функционирующее как разделитель лучей, а C – точка на M, частично отражающая. Когда луч S попадает в точку на M, то разделяется на два пучка. Один луч отражается в сторону A, а второй передается через поверхность M в точку B. A и B – точки на сильно полированных зеркалах M 1 и M 2 . Когда лучи попадают в эти точки, то отражаются обратно в точку C, где рекомбинируют для создания интерференционной картины. В точке E она попадает в обзор наблюдателю.

Диаграмма интерферометра Майкельсона демонстрирует маршрут прохождения световых волн

Применения

Интерферометр Майкельсона применяют для поиска гравитационных волн. Он также сыграл главную роль в исследовании верхнего атмосферного слоя, определении температур и ветров через измерение допплеровской ширины и сдвигов в спектрах свечения и сияния.

Но все же многим запомнилось наиболее известное применение – эксперимент Майкельсона-Морли. Это была неудачная попытка демонстрации влияния гипотетического эфирного ветра на скорость обычного ветра. Это вдохновило на создание специальной теории относительности.

Имеется много разновидностей интерференционных приборов, называемых интерферометрами. На рис. 123.1 изображена схема интерферометра Майкельсона. Пучок света от источника 5 падает на полупрозрачную пластинку покрытую тонким слоем серебра (этот слой показан на рисунке точками). Половина упавшего светового потока отражается пластинкой в направлении луча 1, половина проходит сквозь пластинку и распространяется в направлении луча 2. Пучок 1 отражается от зеркала и возвращается к где он делится на два равных по интенсивности пучка. Один из них проходит сквозь пластинку и образует пучок 1, второй отражается в направлении к S; этот пучок нас интересовать больше не будет. Пучок 2, отразившись от зеркала тоже возвращается к пластинке где он делится на две части: отразившийся От полупрозрачного слоя пучок 2 и прошедший сквозь слой пучок, которым мы также интересоваться больше не будем. Пучки света 1 и 2 имеют одинаковую интенсивность.

При соблюдении условий временной и пространственной когерентности пучки 1 и 2 будут интерферировать. Результат интерференции зависит от оптической разности хода от пластинки до зеркал и обратно. Луч 2 проходит толщу пластинки трижды, луч 1 - только один раз. Чтобы скомпенсировать возникающую за счет этого разную (вследствие дисперсии) для различных длин волн оптическую разность хода, на пути луча 1 ставится точно такая, как но не посеребренная пластинка Тем самым уравниваются пути лучей и 2 в стекле. Интерференционная картина наблюдается с помощью зрительной трубы Т.

Заменим мысленно зеркало его мнимым изображением в полупрозрачной пластинке Тогда лучи 1 и 2 можно рассматривать как возникшие за счет отражения от прозрачной пластинки, ограниченной плоскостями . С помощью котировочных винтов можно изменять угол между этими плоскостями, в частности их можно устанавливать строго параллельно друг другу. Вращая микрометрический винт можно плавно перемещать зеркало не изменяя его наклона.

Тем самым можно изменять толщину «пластинки», в частности можно заставить плоскости пересечься друг с другом (рис. 123.1,6).

Характер интерференционной картины зависит от юстировки зеркал и от расходимости пучка света, падающего на прибор. Если пучок параллелен, а плоскости образуют угол, не равный нулю, то в поле зрения трубы наблюдаются прямолинейные полосы равной толщины, расположенные параллельно линии пересечения плоскостей . В белом свете все полосы, кроме совпадающей с линией пересечения полосы нулевого порядка, будут окрашенными. Нулевая полоса оказывается черной, так как луч отражается от пластинки снаружи, а луч 2 - изнутри, вследствие чего между ними возникает разность фаз, равная белом свете полосы наблюдаются лишь при малой толщине «пластинки» (см. (122.5)). В монохроматическом свете, соответствующем красной линии кадмия, Майкельсон наблюдал отчетливую интерференционную картину при разности хода порядка 500 000 длин волн (расстояние между составляет в этом случае приблизительно 150 мм).

При слегка расходящемся пучке света и строго параллельном расположении плоскостей и МЬ. получаются полосы равного наклона, имеющие вид концентрических колец. При вращении микрометрического винта кольца увеличиваются или уменьшаются в диаметре. При этом в центре картины либо возникают новые кольца, либо уменьшающиеся кольца стягиваются в точку и затем исчезают. Смещение картины на одну полосу соответствует перемещению зеркала на половицу длины волны.

С помощью описанного выше прибора Майкельсон осуществил несколько вошедших в историю физики экспериментов. Самый знаменитый из них, выполненный совместно с Морли в 1887 г., преследовал цель обнаружить движение Земли относительно гипотетического эфира (об этом опыте мы расскажем в § 150). В 1890-1895 гг. с помощью изобретенного им интерферометра Майкельсон произвел первое сравнение длины волны красной линии кадмия с длиной нормального метра.

В 1920 г. Майкельсон построил звездный интерферометр, с помощью которого он измерил угловые размеры некоторых звезд. Этот прибор монтировался на телескопе. Перед объективом телескопа устанавливался экран с двумя щелями (рис. 123.2).

Свет от звезды отражался от симметричной системы зеркал установленных на жесткой раме, укрепленной на тележке. Внутренние зеркала были неподвижны, а внешние могли симметрично смещаться, удаляясь от зеркал либо приближаясь к ним. Ход лучей ясен из рисунка. В фокальной плоскости объектива телескопа возникали интерференционные полосы, видность 1 которых зависела от расстояния между внешними зеркалами. Перемещая эти зеркала, Майкельсон определял расстояние между ними при котором видность полос обращалась в нуль. Это расстояние должно быть порядка радиуса когерентности световой волны, пришедшей от звезды. Согласно (120.14) радиус когерентности равен Из условия получается угловой диаметр звезды